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Materials and Methods 

 

Human tissue transport and preparation 

All human experiments were approved by the Ethics Committee of the Charité – 

Universitätsmedizin Berlin and performed in agreement with the Declaration of Helsinki. 5 

Neocortical tissue used in this study was obtained from resections of the anterior temporal lobe 

of twenty-seven epilepsy patients and of three brain tumor patients (Table S1). All patients had 

given written consent prior to the procedure. The brain tissue used in this study was presumably 

non-pathological, as it was not located in the area of the seizure focus or the tumor. Immediately 

after removal, tissue was transferred to carbonated (95% O2, 5% CO2), ice-cold transport 10 

protective solution; either “NMDG” [containing (in mM) NMDG (93), HCl (93), KCl (2.5), 

NaH2PO4 (1.2), NaHCO3 (30), MgSO4 (10), CaCl2 141 (0.5), HEPES (20), glucose (25), Na-L-

ascorbate (5), thiourea (2), Na-pyruvate (3) (ref 3)] or in “Choline” solution [containing (in mM) 

Choline chloride (110), KCl (2.5), NaH2PO4 143 (1.25), NaHCO3 (26), MgCl2 (7), CaCl2 (0.5), 

glucose (10), Na-L-ascorbate (11.6), Na-144 pyruvate (3.1) (ref 37) ] and transported within 10-15 

40 minutes to the location where pia was carefully removed and then transported a second time, 

within 5 minutes in the same ice-cold transport solution, to the laboratory for slicing and 

recording. Tissue resected from tumor patients was transported and sliced in “Sucrose” solution 

[containing (in mM) NaCl (87), NaH2PO4 (1.25), KCl (2.5), CaCl2 (0.5), MgCl2 (3) Glucose 

(10), NaHCO3 (25), Saccharose (75)]. Cortical tissue was sliced to thickness of 300-350 μm with 20 

Leica 1200vt vibrotome in protective Choline solution with the blade oriented as orthogonally to 

the pia as possible to maintain complete dendrites. Slices were incubated in either “HEPES” 

solution [identical to NMDG solution but with NaCl (92) instead of NMDG (93) and HCl (93) 
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(ref 38)] or “aCSF” [containing (in mM) NaCl (125), KCl (2.5), NaH2PO4 (1.25), NaHCO3 

(25), MgCl2 (1), CaCl2 141 (1), glucose (25)] solution in 35° C for at least 30 minutes and then 

stored in aCSF continuously perfused with carbogen for the rest of the experiment in room 

temperature no longer than 24 hours.  

 5 

Electrophysiology 

Slices were submerged in the recording chamber and perfused with aCSF (~2 ml/min) and 

heated to 33-35°C (Scientifica). Single L2/3 pyramidal neurons were identified using infrared 

Dodt gradient contrast and a CCD camera (CoolSnap ES2; Roper Scientific). Data were acquired 

with InstruTECH ITC-18 board and custom software written in Igor (Igor 6.22A; Wavemetrics). 10 

The direct (point-to-point) distance of the soma from pia and the distance of the dendritic 

electrode from the soma were measured during the recording session. Cells were chosen 

randomly. Recording pipettes were filled with intracellular solution containing 0.1% Biocytin 

and (in mM), K-gluconate (130), KCl (20), Mg-ATP (4), Na2-phosphocreatine (10), GTP-Tris 

(0.3), HEPES (10). The pH was adjusted with KOH to 7.25 – 7.30. Osmolality was 300 mosmol 15 

l–1. In addition, the somatic pipette contained 10 – 20 μM Alexa 594 (Invitrogen). 

Dual whole-cell voltage recordings were performed from the soma and dendrites using Dagan 

BVC-700A amplifiers (Dagan Minneapolis, USA) with low pass filter set to 5 KHz. We did not 

correct for liquid junction potential. Pipette resistance and access resistance were typically 4 – 12 

MΩ and 12 – 20 MΩ for the somatic pipette. Due to the small diameter (3) of the dendrites of 20 

L2/3 neurons, the dendritic pipette resistance and access resistance was 14 – 32 MΩ and 40 –

 200 MΩ respectively (39).  
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Access resistance and capacitance were continuously monitored for the dendritic electrode in 

current clamp mode. For the voltage attenuation plot in Fig. S1D, in addition to the manual 

compensation of the dendritic pipette access resistance during the experiment, we further 

corrected access resistance offline by fitting single exponential curve to the last 4 ms of the 

voltage response to the current test pulse (test pulse had duration of 5 ms and amplitude of –60 5 

nA). Then, the exponential fit was extrapolated to the beginning of the stimulus time to get the 

expected voltage. The difference between the experimentally measured voltage and the voltage 

computed by the exponential fit was used to find the additional access resistance which was 

insufficiently compensated during the experiment. 

 10 

Statistical analysis 

Wilcoxon rank-sum test for two independent samples was used using Igor (WaveMetrix) built-in 

operation. 

 

Visualization of biocytin-filled neurons 15 

To morphologically identify and characterize recorded neurons, the acute human slices were 

processed for histology as previously described (40). In brief, slices were fixed at least for 24 

hours in phosphate buffered (PB) solution (0.1 M) containing 4% paraformaldehyde. 

Subsequently, slices were intensely rinsed and incubated with Alexa Flour 647-conjugated 

streptavidin (Invitrogen, UK, dilution 1:1000 in PB, including 0.1% Triton-X100 as detergent) 20 

overnight at 4°C. Slices were finally mounted in an aqueous mounting medium (Fluoromount, 

Southern Biotech, AL, USA) either on glass slides with a cover slip or between two coverslips 

with a 300 µm metal spacer. 
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Confocal imaging and reconstruction of neurons 

Cells were imaged on a laser scanning confocal microscope (FluoView 1000, Olympus) using a 

20x (N.A 0.75) or a 30x (N.A 1.05) silicon oil-immersion objective. Image stacks were collected 

at 1024x1024 resolution in the horizontal plan (2µs pixel dwell time) and 1 µm steps along the 5 

Z-axis. Image stacks covering the full extent of the neuron were stitched using the FIJI software 

package (41) (http://fiji.sc) and 3D reconstructions of the somato-dendritic domain of selected 

cells were performed using the neuTube software package (42). 

 

Two–photon imaging.  10 

Cells were filled with 100 µM Oregon-green 488 BAPTA-1 (Thermo Fischer, Wlatham, MA) by 

dialysis from the patch pipette in whole-cell configuration. Cells were stimulated 10x with 2 ms 

current steps at 50 Hz and 200 Hz. Line scan recordings began typically 40 minutes (~ 30–120 

min) after break-in and were performed chronologically from soma to dendrite. Data acquisition 

was performed using MATLAB (MathWorks Inc.) based MES software package (Femtonics). 15 

Calcium signals were imaged with a Femto 2D two‐photon laser scanning system (Femtonics 

Ltd, Budapest, Hungary) equipped with a femtosecond pulsed Chameleon Ti:Sapphire laser 

(Coherent, Santa Clara, CA, USA) tuned to λ = 800 nm. Fluorescence was detected in 

epifluorescence mode with a water immersion objective (LUMPLFL ×60/1.0 NA, Olympus, 

Hamburg, Germany) and 525/50 bandpass filter. Trans‐fluorescence and transmitted infrared 20 

light were detected using an oil immersion condenser (Olympus; 1.4 NA).  

Fluorescence resulted from Ca2+ transients were acquired with 64-pixel line scans with an 

average 0.5 kHz sampling rate (minimum 48 Hz and maximum of 1.5 kHz). Individual traces 
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were oversampled offline (interpolation) to 1.5 kHz (i.e. maximum sample rate) and averaged 

over at least 4 repetitions and smoothed by 5 points boxcar filter. Ca2+ transients are reported 

here as the peak change in OGB-1 fluorescence (F(t)) normalized to the resting OGB 

fluorescence (F0) after subtracting the background fluorescence from neighboring regions Fbg, 

 5 

.  (1) 

The fluorescence against the distance from the soma were fitted by a skewed Gaussian curve 

using the equation  where a, b, c, and d are fitting parameters. 

 

Computational model 

 10 

We used a reconstruction of L2/3 neuron morphology (Fig. 3A), consisting of a somatic 

compartment, 101 basal dendritic sections, 81 apical tree sections and an axonal cable (1000 μm 

length, 1μm diameter). For each section compartment lengths were at most 30 μm. Membrane 

capacitance (Cm) and axial resistance (Ri) were uniformly set to 0.45 μF cm2 (43) and 100 Ω×cm, 

respectively, over the entire dendrite. These values resulted in somatic input resistance (Rin) and 15 

membrane time constant (τm) of 39 MΩ and 17 ms, respectively, similar to the experimental 

values (Rin = 41 MΩ and τm = 14 ms). The soma was modeled with sodium (INa), potassium 

delayed rectifier (IKdr) currents, with the corresponding maximal conductances, gNa = 0.1 S/cm2 , 

gK = 0.045 S/cm2 and reversal potentials, EK = –80 mV, ENa = 90 mV. Rm was 37 MΩ×cm2 in all 

compartments. The rate functions for the sodium and potassium channels where taken from (44), 20 

but all activation curves were  shifted by –50 mV [originally –60 mV in (45)] to account for 
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somatic threshold we observed in the experiment (complete model for Fig. 3 and Fig. S9 is 

publically available in ModelDB) 

dCaAPs were simulated at one dendritic compartment where threshold, width and amplitude as a 

function of the input strength were simulated by sum of current sources with a sigmoidal shape. 

Specifically, the dCaAP current,  5 

 

,  (2) 

 

was triggered when membrane potential crossed –36 mV where w was 1.6 and 4 such that the 

dCaAP amplitude was about 50 mV and 60 mV at threshold in Fig. 3 and in Fig. S9, 

respectively.  10 

A and B, the rise and decay of the dCaAP current were given by sigmoid functions 

 and  where t’ is the dCaAP 

onset, Δt’ = 21 ms,  = 3 ms and  = 0.4 ms. The dendrite activation function, K(v), which 

depended on membrane potential, [where in our passive dendritic model approximate dCaAP 

suppression as a function of the current K(i)], was  15 

 

 
 (3) 

 

where v is the membrane potential at the location of the dCaAP, vth is the threshold (–36 mV) for 

dCaAP, F  = 1/(vth – vrest), is a normalization factor and τK, the dCaAP amplitude decay constant 

was 0.3 (dimensionless). The refractory period was explicitly set to 200 ms such that dCaAPs 20 

fired with 5 Hz or less. Synaptic model was done similarly to refs (33, 45, 46).  
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All the synapses were activated at 20 Hz in all the models. The synaptic current was modeled as, 

, where  is the synaptic conductance change, and 

Esyn is the reversal potential for the synaptic current  which was 0 mV for excitatory synapses 

and –75 mV for inhibitory synapses. The conductance change for AMPA, NMDA and GABA 

was modeled as  5 

 

 ,  (4) 

 

where N is normalization factor such that gmax the peak conductance. gmax and time constants 

where as follows: gmax,AMPA = 0.7  nS, gmax,NMDA = 1.3 nS, gmax,GABA =0.5 nS, τ1,AMPA = 0.3 ms, 

τ2,AMPA = 1.8 ms, τ1,NMDA = 8 ms, τ2,NMDA = 35 ms, τ1,GABA = 2 and τ2,GABA = 23 ms (Fig. 3 and distal 10 

inhibition in Fig. S9), τ1,GABA-proximal = 0.5 and τ2,GABA-proximal = 5 ms (Fig. S9, proximal inhibition).  

For AMPA and GABA, we used G = 1, whereas for NMDA 

 

  ,  (5) 

 

where [Mg2+] is extracellular magnesium concentration of 1 mM, γ = 0.077 1/mV (33).  15 
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Fig. S1. Steady potentials are severely attenuated at the apical dendrite of layer 2/3 

pyramidal neurons in the human cortex. 

A. Reconstructed cortical layer 2/3 pyramidal neuron at a depth of 1098 μm from the pia. B. Two 5 

consequent dual recordings of soma and dendrites during somatic negative step current injection. 

The traces’ color corresponds to the color of the patch clamp electrodes in A in the two dendritic 

sites. C1. Experimental schematic depicts stimulation (negative current step for one second) and 

recording site at the soma (black pipette) and a second recording site at the dendrite. C2. 

Attenuation of steady potentials (averaged for voltage traces between 800 and 1000 ms after 10 

stimulation onset; n = 34) from the soma to the dendrite (dendritic potential normalized by the 

somatic potential) plotted against the distance of the dendritic recording electrode. Length 

constant is λ = 475 μm (single exponential fit). Gray region on the graph depicts a putative 

region of layer 1 for the longest dendrites. D1. As in C1 but current was injected into the dendrite 

rather than the soma. D2. As in C2 but for the potential attenuation from the dendrite to the 15 
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soma. Length constant was λ = 195 μm (single exponential fit; n = 23; average Raccess of 71.3 ± 

19.5 MΩ ranging between 38.0 and 113.4 ms). The amplitude of the exponential fit in C2 and D2 

was not constrained to value of 1 at the soma. 
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Fig. S2. 2-photon imaging indicates that APs invade the distal dendrite at high frequency. 

A. AP bursts were evoked by injecting 10 supra-threshold current pulses of 2 ms duration at 50 5 

Hz (blue traces) and at 200 Hz (orange traces) at the soma of layer 2/3 pyramidal neurons. B. 

Example of Ca2+ signals in a pyramidal neuron located 640 μm below the pia surface. Dendritic 

locations where imaged sequentially. ΔF/F traces are shown with corresponding color (blue and 
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orange for somatic pulses at 50 Hz and 200 Hz, respectively). C. Summary for amplitude of 

ΔF/F for somatic current pulse stimulation at 50 Hz (blue dots; n = 18 cells) and at 200 Hz 

(orange dots; n = 13 cells). Note the enhanced ΔF/F response for stimulation at 200 Hz [fitted 

with scaled skewed Gaussian (4)]. D. Ca2+ signal at the spine (ΔF/Fspine) was very similar to the 

corresponding signal at the branch (ΔF/Fbranch) for both 50 Hz and 200 Hz APs burst frequency. 5 
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Fig. S3. Dendritic APs were blocked by the voltage gated calcium channel blocker, Cd2+, 

and were not blocked by Na+ channel blocker, TTX. 

 5 

In all panels dendritic voltage (top trace in blue/red) and somatic voltage (bottom trace in black) 

are shown in response to a current step injected by the dendritic electrode. A. Dendritic APs were 

recorded in the presence of TTX (1 μM; n = 4) in the recording chamber. Dendritic electrode was 

located 306 μm from the cell body. B. As in A in another cell with dendrite electrode 260 μm 

from the soma. In addition NMDG was used here as substitution for the sodium ions in the 10 

extracellular solution to exclude the possibility that dCaAPs are triggered by TTX-insensitive 

sodium channels. In A and B framed dCaAPs are magnified on the right with scale bar in B. C. 

Step current injected by the dendritic electrode (279 μm from the soma) triggered uncoupled 

dCaAPs (C1) blocked by Cd2+ (n = 5 cells) (C2). dCaAPs reappeared after Cd2+ washout (C3; 
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3/5 dendrites recorded for sufficient time, >20 min, to allow washout). The framed dCaAP is 

magnified on the right. Scale bar for traces in A–C is shown in the bottom of C2.  

 

 

  5 
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Fig. S4. dCaAPs in the pyramidal neurons of L2/3 in neocortical tissue obtained from 

tumor patients. 

Dendritic voltage (top trace in blue) and somatic voltage (bottom trace in black) in response to 5 

current step injected by the dendritic electrode. Dendritic voltage traces are presented with an 

offset to the right with respect to the somatic traces. A. dCaAPs in L2/3 pyramidal neuron in the 

right temporo-mesial cortex resected from a tumor patient. The neuron was located at depth of 

767 μm from the pia and the dendritic electrode was located 291 μm from the soma. The dendrite 

fired burst of complex-coupled dCaAPs. B. Simple-uncoupled dCaAPs recorded in a L2/3 10 

pyramidal neuron (682 μm from the pia with the dendritic electrode at 267 μm from the soma) 

from the left temporo-mesial cortex resected from a different tumor patient from A. 
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Fig. S5. Properties of bAPs and dCaAPs at threshold in human layer 2/3 neurons. 

 
A. bAP upstroke maximal derivative against the distance of the recording electrode from the 

soma and exponential fit with decay constant λ = 121 μm (n = 31). B. dCaAP upstroke as a 

function of the recording distance from the soma is weakly correlated with distance (r2 = 0.1; 5 

n = 28). B–E. dCaAPs’ upstroke (B; r2
 = 4.6×10-5), width (C; at half of the amplitude; r2 = 

0.058), downstroke (D; maximal derivative; r2 = 0.017) and the delay to the first AP from 

stimulation onset (E; r2 = 0.18) are independent or weakly dependent of the distance of the 

recording electrode from the soma. F. dCaAP’s widths weakly depended on the dCaAP’s 

amplitudes (r2 = 0.13). G. dCaAP’s upstrokes and downstrokes are correlated (r2 = 0.4). In B–G 10 

n = 28 dendrites were used. For consistency with all traces, results are shown for the first dCaAP. 

H. Dendritic electrode evoked somatic APs at proximal regions (170 ± 93 μm from the soma) 

and dCaAPs at the distal regions (323 ± 99 μm from the soma; Wilcoxon rank-sum test, p < 

10-5). I. Dendritic electrode evoked either somatic APs or dCaAPs independently of the depth of 

the soma from the pia (the cortical surface). H. dCaAP’s amplitudes in single near threshold 15 

traces in 17 dendrites. Average coefficient of variation was 0.116. 
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Fig. S6. Gallery of complex dCaAPs. 

Left column, dCaAPs (indicated by red arrows) followed by bAPs (green arrows) in response to a 

dendritic current step injection. Right column, Somatic APs (truncated) and dCaAPs (red arrow) 5 

recorded at the soma. Somatic APs in these traces were only evoked when preceded by dCaAPs. 
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Fig. S7. Summary of bAPs and dCaAPs recordings in L2/3 in the human neocortex. 

A schematic drawing summarizing the site of the dendritic electrodes and depth of the somata of 

the 52 dendrites recoded in this study. Green electrode marker depicts bAP recording. The color-5 

coded dots above each neuron indicate that dCaAPs were either coupled or uncoupled with 

somatic AP (mutually exclusive classification) and whether dCaAPs were complex and/or simple 

in these dendrites. The total number of cells for each condition is shown in parentheses. 
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Fig. S8. dCaAPs width and amplitude as a function of the stimulus intensity. 

A. (Copied from Fig. 2E for comparison) dCaAP amplitudes plotted against the input current 5 

strength (Idend) for uncoupled dCaAPs (12 dendrites), fitted by exponential curves (dashed line). 

Dots in different colors represent dCaAP amplitudes from different cell (12 dendrites). B. dCaAP 

widths at half of the amplitude increases with Idend for the cells in A (a linear fit for each cell is 

plotted in black dashed line). C. dCaAP amplitude × width (an approximation to the dCaAP 

integral) decreases with Idend namely, the increase in dCaAP width did not counteract the 10 

amplitude decay effectively (a linear fit for each cell is plotted in black dashed line). 
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Fig. S9. Combinatorial activation of dCaAPs and somatic APs by the synaptic inputs. 

Here we used identical model as in Fig. 3 (see also Methods) but with dCaAP channels located 

287 μm from the soma. Current threshold for dCaAPs (Irhe) was 500 pA. A. Pathway X with 35 5 

synapses distributed over a subregion of the apical dendrite (as in Fig 3A) was able to trigger 

dCaAPs (top trace) that were coupled with somatic APs (bottom trace). B. Pathways X + Y were 

less effective in triggering APs at the soma because they suppressed the dCaAP amplitudes. C. 

35 distal inhibitory synapses [≥ 700 μm from the soma, e.g. inhibition from Martinotti cells (28)] 

in addition to pathways X and Y caused dCaAPs to regain their amplitudes and impact on the 10 

somatic output. D. When pathway X was activated with 35 proximal inhibitory synapses 

distributed on the basal dendrite [e.g. inhibition from basket cells (47)], dCaAP amplitudes were 

maximal as in A, but firing of APs at the soma was inhibited. Somatic firing rates were 1.7 Hz 
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(A), 0.54 Hz (B), 1.5 Hz (C), 0.25 Hz (D). All synapses in the model were active at 20 Hz. 

Model files can be downloaded from http://modeldb.yale.edu. 
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Fig. S10. dCaAP are evoked by transient inputs. 

A. Idend injected 260 μm from the cell body, with 20 ms rise time constant and 80 ms decay time 5 

constant emulates a transient synaptic barrage to the dendrite. B-C. Somatic (B) and dendritic 

(C) firing as a response for Idend in A. As Idend increased dCaAP amplitude decreased and somatic 

APs were no longer triggered (top three traces). D. Magnified dCaAP (in blue; framed in C) 

preceded the somatic AP (in black; framed in B). E. dCaAP and somatic AP (E1) for Idend with 2 

ms rise time constant and 8 ms decay time constant (E2) and magnified dCaAP and somatic AP 10 

(E3) for the framed dCaAP in E1. F. dCaAPs at threshold in different dendrites for Idend with rise 

time constant of 2–20 ms and decay time constant of 20–80 ms. 
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Fig. S11. Non-destructive summation between bAP and dCaAP. 

A. Experimental schematic. Stimulus (A1) and recorded voltage traces (A2) for 10 brief pulses 

(2 ms each) injected to the soma triggering reliable somatic APs. Step currents with increasing 5 

strength injected into the dendrite. B. Magnified region framed in A2 showing bAPs for each 

value of Idend. bAP0 is the amplitude of the bAP at Idend = –100 pA. bAPmax is the maximal bAP 

amplitude (for any Idend). C. bAP0 and bAPmax are similar for proximal dendritic sites and diverge 
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for distal sites (black arrow). D. Non-destructive collision of bAPs and dCaAPs: (1) bAP evoked 

by a brief somatic current stimulus (Isoma). (2) dCaAP evoked by Idend. (3) Collision of a bAP and 

a dCaAP due to Isoma + Idend. (4) Algebraic summation of a bAP (from 1) and a dCaAP (from 2) 

recorded separately. E–G. Examples of collisions in other dendrites. Numbers 1–4 corresponds 

to the conditions in D. The similarity in membrane potential between conditions 3 and 4 suggests 5 

that the summation of bAPs and dCaAPs is not destructive.  
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 5 

Fig. S12. Modeling dCaAPs with known calcium and potassium channels. 

We modeled an isopotential segment of a dendrite in NEURON simulation environment with 

high voltage Ca2+ (HVA-like) channels (48), voltage and Ca2+ dependent potassium (BK-like) 

channels (49) and leak channels such that Rin = 92 MΩ and τm = 14 ms. In addition to the 

functional relevance, BK channels are diverse and know to express in human neurons (50). For 10 

the intracellular Ca2+ ions clearance we used a Ca2+ pump from (51). Only the time constants of 

the BK-like channels gates were modified to achieve the characteristic waveform of the dCaAP 

(Table S2; model files can be downloaded from http://modeldb.yale.edu). A. Our model 

faithfully reproduced dCaAPs’ amplitude, width and the slow rise time we observed in vitro. B. 

As a function of the input (B1) dCaAP amplitude decayed (B2, B3) similar to the results shown 15 

in Fig. 2D. We could not reproduce this behavior without the Ca2+ and voltage dependence of the 

BK-like channels. For the sake of simplicity we did not use additional mechanism to reduce the 
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high amplitude of the first dCaAP in each trace as observed in vitro (truncated dCaAPs). C1. The 

dCaAPs’ decay was weaker than in B3 (as a function of Idend) for faster Ca2+ pump time constant 

(40 ms). C2 The dCaAPs’ decay was stronger than in B3 for slower Ca2+ pump time constant.  

(80 ms ; Table S2).  
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Table S1: Summary of patients’ details and diagnosis. 

# Age 
Age at 

epilepsy onset Sex Diagnosis Recent antiepileptic drugs (mg/day) 

1 26 19 F TLE LTG (500), ZNS (500) 

2 29 20 F TLE LAC (400), LEV (3000) 

3 35 27 M TLE LEV (3000), LTG (400) 

4 41 25 F TLE LTG (400), ZNS (300) 

5 32 27 F TLE OXC (1500), LEV (3000) 

6 54 16 F TLE OXC (1200), LTG (200) 

7 20 16 F TLE LTG (600) 

8 42 5 F TLE TPM (300), BRV (300) 

9 28 13 M TLE VPA (2000), OXC (2100) 

10 22 12 F TLE OXC (1200) 

11 18 12 M TLE OXC (2400) 

12 45 16 M TLE ZNS (200), OXC (1200), CLB (10) 

13 32 27 M TLE LAC (400), LEV (3000), LTG (150) 

14 15 – M TLE LEV (2000) 

15 26 11 M MLE OXC (2100), CLB (20) 

16 43 29 M TLE LTG (500), LAC (500), CLB (20) 

17 36 12 M TLE LTG (200), LAC (400) 

18 26 14 M TLE OXC (1800), TPM (75) 

19 31 21 M TLE LAC (600), BRV (200) 

20 39 1 F TLE LTG (300) 
21 22 15 M TLE LTG (800), ESL (1200) 

22 40 26 M TLE CBZ (1200), TPM (250), BRV (200) 

23 27 10 M TLE LAC (400), BRV (50) 

24 30 23 M TLE LEV (3000),LAC (300),CLB (20) 

25 21 14 F TLE LTG (900) 

26 34 6 M TLE LTG (700) 

27 21 17 F TLE OXC (1000) 

28 68 – M glioblastoma1  

29 63 – F glioblastoma2  

30 37 – F 
dysembyroplastic 

neuroepithelial 
tumor3 

 

      
 
M: Male; F: Female; TLE: temporal lobe epilepsy; MLE: multilobar epilepsy; 

Antiepileptic drugs specified: BRV: brivaracetam; CBZ: carbamazepine; CLB: clobazam; ESL: eslicarbazepine acetate; LAC: 

lacosamide; LEV: levetiracetam; LTG: lamotrigine; OXC: oxcarbazepine; TPM: topiramate; VPA: valproate; ZNS: zonisamide;  5 

1. Left frontal region 

2. Right temporomesial region and insula 
3. Left temporomesial region 
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Table S2: Summary of main biophysical parameters for the model in Fig. S12. 

 

Channel   Parameter Value Modified 
parameters 

BK-like source Khaliq et al., (2003)  

  0.03  

    

    

  1  

HVA-like source Reuveni et al., (1993)  

  0.0005  

Ca2+ pump source Destexhe et al. (1993)  
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